
WS 8.4, 8.6

1 Problem 1

1. Where applicable in (a)− (c), carry out the necessary division in preparation for integration. If division
is not needed, give a reason why it is not needed.

(a) x2

x2−x+1

(b) x−1
x2−x+1

(a) x4+4
x2+1

(a) The degree on top is bigger, so we should perform a division [to divide, successively multiply the
divisor (x2 − x + 1) by an appropriate Cxn (this goes on top each time) in order to match the highest term
of what’s inside the division sign (x2, then x− 1) then subtract, cancelling it, and giving you a lower degree
inside the division]:

1

x2 − x + 1
)

x2

− x2 + x− 1

x− 1

Thus x2

x2−x+1 = 1 + x−1
x2−x+1 .

(b) Here polynomial division is unnecessary since the degree on the top is less than the degree on the
bottom.

(c) The degree on top is bigger, so we should perform a division:

x2 − 1

x2 + 1
)

x4 + 4
− x4 − x2

− x2 + 4
x2 + 1

5

Thus x4+4
x2+1 = (x2 − 1) + 5

x2+1 .

2 Problem 2

2. In the following, write the rational function as a combination of factors like those appearing in (4) and/or
(5) of Section 8.4, without finding the numerical values of the constants A1, ..., B1, ..., C1, ...

(a) 6x2−4x+1
(x−2)3

(b) x3+2x2+3x+4
x4−16



(a) We’ll set up our partial fraction decomposition since the denominator is already factored: 6x2−4x+1
(x−2)3 =

A
x−2 + B

(x−2)2 + C
(x−2)3 . Now multiply both sides by the denominator (x− 2)3:

6x2 − 4x + 1 = A(x− 2)2 + B(x− 2) + C
=⇒ 6x2 − 4x + 1 = Ax2 − 2Ax + 4A + Bx− 2B + C = Ax2 + (B − 2A)x + 4A + C − 2B

Then equating coefficients, we gain the following system of equations:

A = 6
B − 2A = −4

4A + C − 2B = 1

We use the first two to solve for B: B − 2(6) = −4 =⇒ B = 8.

Now we can use the last equation to solve for C: 4(6) + C − 2(8) = 1 so C = 1 + 16− 24 = −7.

Thus

6x2−4x+1
(x−2)3 = A

x−2 + B
(x−2)2 + C

(x−2)3 = 6
x−2 + 8

(x−2)2 −
7

(x−2)3 .

Thus we’re done.

(b) Note we don’t need to do any division, since the degree on top is smaller than 4.

Now, we factor denominator, using difference of perfect squares a2 − b2 = (a + b)(a − b): x3+2x2+3x+4
x4−16 =

x3+2x2+3x+4
(x2−4)(x2+4) = x3+2x2+3x+4

(x+2)(x−2)(x2+4) . Note x2 +4 is an irreducible quadratic since it has no real roots (it’s always

positive).

We set up our partial fraction decomposition: x3+2x2+3x+4
(x+2)(x−2)(x2+4) = A

x−2 + B
x+2 + Cx+D

x2+4 .

Now multiply both sides by the denominator x4 − 16:

x3 + 2x2 + 3x + 4 = A(x + 2)(x2 + 4) + B(x− 2)(x2 + 4) + (Cx + D)(x− 2)(x + 2)

Expanding this gets messy so we’ll use our shortcuts: plugging in x = −2, x = 2.

Plugging in x = −2, the equation tells us that (−2)3 + 2(−2)2 + 3(−2) + 4 = 0 + B(−4)((−2)2 + 4) + 0,
or −24B = −2, or B = 1

12 .

Plugging in x = 2, the equation tells us that 23 + 2(22) + 3(2) + 4 = A(2 + 2)(22 + 4) + 0 + 0 or 24A = 26,
so A = 13

12 .

To find C, there’s another shortcut to take: collect the cubed powers on the right. Notice that
(Cx + D)(x − 2)(x + 2) has highest term Cx3 when we expand it. Note also A(x + 2)(x2 + 4) has highest
term Ax3 when we expand it, and similarly B(x − 2)(x2 + 4) has Bx3. Thus the coefficient on x3 on the
right is A + B + C. Equate this to the left hand side’s coefficient of x3, so that 1 = A + B + C. Thus
13
12 + 1

12 + C = 1. Thus C = −2
12 = −1

6 .

To find D we can take another shortcut. Look at the constant terms on the right: we’ll have 8A from
A(x+ 2)(x2 + 4), −8B from B(x− 2)(x2 + 4), and −4D from (Cx+D)(x− 2)(x+ 2). Equate this to the left



side: 4 = 8A− 8B − 4D, so 1 = 2(A−B)−D. Then D = 2(A−B)− 1, so D = 2( 13
12 −

1
12 )− 1 = 2− 1 = 1.

3 Problem 3

(a) Show that x2

(x2−4)2 = 1
4 ( 1

x−2 + 1
x+2 )2.

(b) Use partial fractions to solve
∫

x2

(x2−4)2 dx

(c) Could the integral in (b) be solved by trigonometric substitution? Explain your answer.

(d) Find
∫ √

x+4
x2 dx . (Hint: Let u =

√
x + 4, and then use the result in part (b)!)

(a) Show that x2

(x2−4)2 = 1
4 ( 1

x−2 + 1
x+2 )2.

We’ll use partial fractions: we factor (x2−4)2 = (x+2)2(x−2)2 and set up our decomposition of x2

(x2−4)2 :

x2

(x+2)2(x−2)2 = A
x−2 + B

(x−2)2 + C
x+2 + D

(x+2)2 .

Multiply both sides by the denominator on the left (x− 2)2(x + 2)2 to obtain

x2 = A(x− 2)(x + 2)2 + B(x + 2)2 + C(x + 2)(x− 2)2 + D(x− 2)2

Again this is nasty to expand so we’ll take the shortcuts of setting x = −2, x = 2. Then for x = −2, we
have (−2)2 = D(−4)2 so D = 1

4 . For x = 2, we’ll have 22 = B(4)2 so B = 1
4 as well. To find A and C, we’ll

use our shortcuts.

We find the highest terms on the right: A(x− 2)(x+ 2)2 and C(x+ 2)(x− 2)2 are the only things on the
right with x3. Then we have Ax3 +Cx3 = (A+C)x3 = 0 since the left side has no x3 terms. Thus A = −C.

Now we find the lowest terms on the right: we’ll have −8A from A(x−2)(x+2)2, 4B from B(x+2)2, 8C
from C(x+2)(x−2)2, and 4D from D(x−2)2. These will combine to 0 since there’s no constants on the left:
−8A+4B+8C+4D = 0. We’ll plug in our values for B = D = 1

4 so −8A+1+8C+1 = 0, or 8(C−A) = −2.

Since A = −C, C −A = 2C. Then 8(2C) = −2 so C = −1
8 , and A = 1

8 since A = −C.

Thus,

x2

(x+2)2(x−2)2 = 1/8
x−2 + 1/4

(x−2)2 + −1/8
x+2 + 1/4

(x+2)2 .

Note that 1/8
x−2 + −1/8

x+2 = (1/8)(x+2)+(−1/8)(x−2)
(x−2)(x+2) = 1/4+1/4

x2−4 = 1/2
x2−4 . Then x2

(x+2)2(x−2)2 = 1/4
(x−2)2 + 1/2

x2−4 +
1/4

(x+2)2 . This is the same as

1
4 ( 1

x−2 + 1
x+2 )2 = 1

4 ( 1
(x−2)2 + 2

(x−2)(x+2) + 1
(x+2)2 ) = 1/4

(x−2)2 + 1/2
x2−4 + 1/4

(x+2)2

Thus x2

(x2−4)2 = 1
4 ( 1

x−2 + 1
x+2 )2 and we’re done.

(b) Use partial fractions to solve
∫

x2

(x2−4)2 dx



We’ll use the decomposition we just found:∫
x2

(x + 2)2(x− 2)2
dx =

∫
1/8

x− 2
+

1/4

(x− 2)2
+
−1/8

x + 2
+

1/4

(x + 2)2
dx (1)

= (1/8) ln(x− 2) + (1/4)
−1

x− 2
− (1/8) ln(x + 2) + (1/4)

−1

x + 2
+ C (2)

= (1/8) ln(
x− 2

x + 2
)− (

1

4x− 8
+

1

4x + 8
) + C = (1/8) ln(

x− 2

x + 2
)− x

2x2 − 8
+ C (3)

Thus we’re done.
(c) Let’s try doing a trig sub for x = a secu, so x = 2 secu, dx = 2 secu tanu du. Then,∫

x2

(x2 − 4)2
dx =

∫
4 sec2 u · 2 secu tanu

(4 sec2 u− 4)2
du (4)

=

∫
8 sec3 u tanu

(4 tan2 u)2
du (5)

=

∫
8 sec3 u tanu

16 tan4 u
du (6)

=

∫
sec3 u

2 tan3 u
du (7)

=

∫
1/ cos3 u

2 sin3 u/ cos3 u
du (8)

=

∫
1

2 sin3 u
du (9)

=

∫
(1/2) csc3 u du (10)

= (1/2)(−(1/2) cscu cotu− (1/2) ln(cscu + cotu)) + C (11)

= −(1/4)
x√

x2 − 4
· 2√

x2 − 4
− (1/4) ln(

x√
x2 − 4

+
2√

x2 − 4
) + C (12)

= − x

2x2 − 8
− (1/4) ln(

√
(x + 2)2√
x2 − 4

) + C (13)

= − x

2x2 − 8
− (1/4) ln(

√
(x + 2)2

(x− 2)(x + 2)
) + C (14)

= − x

2x2 − 8
− (1/8) ln(

x + 2

x− 2
) + C (15)

(16)

since we’ve seen
∫

csc3 x dx = −(1/2) cscx cotx− (1/2) ln | cscx + cotx|+ C. It can be solved by trig subs,
but it’s more complicated.

To do the backsubs to go back to x’s from u’s, we used x
2 = secu = hyp

adj defining a triangle:



x

u 2

√
x2 − 4

Thus cscu = x√
x2−4 = hyp

opp , cotu = 2√
x2−4 = adj

opp .

(d) Find
∫ √

x+4
x2 dx . (Hint: Let u = x + 4, and then use the result in part (b)!)

When we set u =
√
x + 4, then du = −(1/2) 1√

x+4
dx so −2u du = dx and x = u2 − 4. Then by part (b),

we have:∫ √
x+4
x2 dx =

∫
u·−2u du
(u2−4)2 = (−2)(− u

2u2−8 − (1/8) ln(u+2
u−2 ) + C) = 2

√
x+4

2(
√
x+4)2−8 + (1/4) ln(

√
x+4+2√
x+4−2 ) + C.

We’ll write this as
√
x+4
x + (1/4)(ln(

√
x + 4 + 2)− ln(

√
x + 4− 2)) + C

4 Problem 4

(a) In a complete sentence, tell why there needs to be an even number of subintervals in Simpon’s Rule.

(b) Does there need to be an even number of subintervals in the Trapezoidal Rule? Explain your an-
swer in a complete sentence.

(a) We need an even number of subintervals of [a, b] in Simpson’s rule because parabolas are determined by
3 points: so a = x0, x1, x2 determine the first parabola, x2, x3, x4 determine the second, so x2k−2, x2k−1, x2k

determine the kth one, and so on until we reach our last point x2k = xn = b. Then the number of subintervals
[x0, x1], [x2, x3], ..., [x2k−1, x2k] = [xn−1, xn] is even since n = 2k must be even.

(b) There does not need to be an even number of subintervals in the Trapezoidal rule, we just need at
least 2 points. If we have 3 points (an odd number) x0, x1, x2, we have two trapezoids, one determined by
(x0, 0), (x0, f(x0)), (x1, 0), (x1, f(x1)) and one determined by (x1, 0), (x1, f(x1)), (x2, 0), (x2, f(x2)).

5 Problem 5

Suppose f is continuous and positive on the interval [xk−1, xk+1] and let xk−1 < xk < xk+1.



(a) Draw the trapezoid above the interval [xk−1, xk], with vertices (xk−1, 0), (xk, 0), (xk, f(xk)), and (xk−1, f(xk−1)).
Then find the area A of the trapezoid.

(b) Using the result of (a), find the sum A1 of the areas of two trapezoids, the one trapezoid above
the interval [xk−1, xk] and the other trapezoid above the interval [xk, xk+1]. Draw a picture for the two
trapezoids.

(a) We draw the trapezoid above [xk−1, xk] with those vertices:

xk−1 xk xk+1

f(xk−1)

f(xk)

f(xk+1)

x

f(x)

Note that the area of this trapezoid is the area of a rectangle with base xk−1 to xk and height f(xk−1)
plus the area of a triangle of height f(xk)− f(xk−1) and base xk−1 to xk. Then

A = (xk − xk−1) · f(xk−1) +
1

2
· (f(xk)− f(xk−1)) · (xk − xk−1) (17)

= f(xk−1) · (xk − xk−1) +
1

2
f(xk) · (xk − xk−1)− 1

2
f(xk−1) · (xk − xk−1) (18)

=
1

2
f(xk−1) · (xk − xk−1) +

1

2
f(xk) · (xk − xk−1) (19)

=
1

2
(f(xk) + f(xk−1))(xk − xk−1) (20)

This is the average height f(xk)+f(xk−1)
2 times the base.

(b) Using (a), we have that

A1 =
1

2
(f(xk) + f(xk−1))(xk − xk−1) +

1

2
(f(xk+1) + f(xk))(xk+1 − xk) (21)

=
1

2
f(xk−1)(xk − xk−1) +

1

2
f(xk)(xk − xk−1) +

1

2
f(xk)(xk+1 − xk) +

1

2
f(xk+1)(xk+1 − xk) (22)

(23)

Notice that if h = xk+1 − xk = xk − xk−1, this equation factors as h/2 · (f(xk−1) + 2f(xk) + f(xk+1)). To
draw a picture for the two trapezoids:



xk−1 xk xk+1

f(xk−1)

f(xk)

f(xk+1)

x

f(x)


